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Strong forcing was used to produce vortex pairing in a submerged axisymmetric 
water jet. Phase-averaged hot-wire measurements were combined with phase- 
averaged flow visualization to identify the relevant nonlinear interactions. The 
leading resonant interaction was not a subharmonic resonance. Instead it was a triad 
resonance involving the subharmonic, the fundamental and the t harmonic. The 
profound influence of higher harmonics on the amplification of the fundamental and 
subharmonic was demonstrated in a systematic way by successive truncation of the 
Fourier series representation of the excitation waveform. 

1. Introduction 
Historically, ideas about large-scale motion in turbulent, free shear flows have 

been based on flow visualization. Vorticity is the flow quantity most related to the 
streakline or dye patterns observed in the visualizations and for that reason the 
dynamics of the large-scale turbulence originally was modelled kinematically in 
terms of vortex induction (Brown & Roshko 1974; Winant & Browand 1974). The 
concept of vortex pairing was introduced by Winant & Browand as the nonlinear 
mechanism whereby turbulent energy is transferred to larger scales and the shear 
layer is caused to spread. 

Recent studies have shown that linear stability theory is sufficient to describe 
accurately many features of fully turbulent, free shear flows (Wygnanski & Petersen 
1987). The major constraints are (i) the stability theory must be applied to the 
measured mean velocity profile rather than some model profile and (ii) the divergence 
of the base flow must be included in the linearized equations. Cross-stream 
distributions of phase-averaged quantities as well as dispersion relations often can be 
predicted in this way from stability eigensolutions. 

When the mixing layer is axisymmetric, stability solutions are functions of two 
non-dimensional parameters : reduced frequency Znfe/U, ; and the ratio of shear layer 
thickness to jet diameter 8/D. The quantities f ,  8, U,, and D refer to wave frequency, 
mixing-layer momentum thickness, jet speed, and nozzle diameter respectively. The 
influence of momentum thickness on the stability solutions becomes more 
pronounced with increasing streamwise distance. However, cross-stream distri- 
butions and wavelengths of dominant axisymmetric instabilities including the 
preferred mode can be predicted from stability theory (Peterson & Samet 1988; 
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Samet & Petersen 1988). In  this sense there is no generic difference between short- 
wavelength instabilities dominant near the nozzle exit and the ‘preferred mode ’, 
dominant near the end of the potential core. In fact at  each streamwise location 
along an unforced jet there was a different ‘preferred mode’ corresponding to the 
most amplified instability at that location (Petersen & Samet 1988). This selection 
process is a consequence of the spreading of the mixing layer. 

Both direct and indirect nonlinear interactions are possible when several 
instabilities with different wavenumbers are present simultaneously. At any given 
streamwise location the dominant instabilities can contribute to the thickening of the 
mean velocity profile by means of wave-induced Reynolds stress. The resultant 
thickening of the mixing layer causes increased amplification of lower-wavenumber 
instabilities. This indirect exchange of energy from higher to lower wavenumber can 
be treated within the framework of linear stability theory by specifying the divergent 
base flow. Direct interactions are quadratic in wave amplitude and can be modelled 
in terms of triad resonances. The conditions for resonance depend on dispersion 
relations for the mixing layer which can be modelled from stability eigenvalues. 

Both direct and indirect interactions may be involved in vortex pairings. Many of 
the visual features of a vortex pairing are associated with the linear amplification of 
a subharmonic wavetrain travelling in a diverging base flow. Stability eigenfunctions 
exhibit a double peak in the vorticity distribution and mean flow divergence causes 
the orientation of the double peak to rotate as the wave approaches the point of 
neutral stability (Michalke 1965 ; Wygnanski & Weisbrot 1988). 

Direct interactions associated with vortex pairings are often modelled in terms of 
a subharmonic resonance between two wavetrains whose frequency and wavenumber 
differ by a factor of two. This idealization can be carried over into experimental 
investigations by exciting the jet with two wavetrains an octave apart in frequency. 
However, more complicated interactions are possible and direct observations of 
vortex pairings in unforced flows suggest that the interactions are fundamentally 
broadband. Pairings are intermittant and often involve more than two vortices 
(Winant & Browand 1974; Ho & Huang 1982). 

The present study is concerned with controlled vortex pairings in an axisymmetric 
mixing layer. The external excitation was periodic but broadband in frequency. 
Under broadband excitation the subharmonic resonance is not the dominant 
interaction. The importance of the higher harmonics to both direct and indirect 
interactions will be demonstrated in a systematic way by successive truncation of the 
Fourier series representation of the excitation waveform. 

2. Experimental technique 
A horizontal, submerged water jet and a vertical air jet were used in this 

investigation. Both jets used a nozzle exit diameter of 5.08 em and were designed to 
operate at the same unit Reynolds number. The details of the water jet were 
described by Clough (1989) and the air jet was described by Petersen & Samet (1988). 

2.1. Water jet faciEity 
The water jet is a closed return facility consisting of a plenum, a nozzle based on a 
fifth-order polynomial, a 1320 1 tank, a 61 cm diameter contraction to catch the jet, 
and a speed-controlled, centrifugal pump. The jet was operated a t  50 cm/s which 
corresponds to a Reynolds number of 2.5 x 104. The centreline turbulence level in the 
nozzle exit plane was 0.7%. 
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The large-scale, turbulent motion was controlled mechanically with a Scotch yoke 
mechanism by periodically constricting the tube supplying the plenum. The peak 
amplitude of the velocity fluctuation introduced by the scotch yoke mechanism, 
measured on the jet centreline at the exit plane of the nozzle, was 11 % of the jet 
speed. Because of the large amplitude of the initial disturbance the mechanism of 
linear amplification may have been bypassed. For this reason the response of the 
water jet properly can be called a ‘forced’ response. 

Following Winant & Browand (1974) vortical fluid was marked by introducing dye 
directly into the boundary layer of the nozzle. Strobe illumination, located on the 
opposite side of the jet from the camera, was used to project an image of the dye onto 
a mylar sheet on the front side of the tank. The strobe was phase locked to the forcing 
mechanism and each photograph consisted of an ensemble of 100 strobe flashes. 

Phase-averaged measurements of the streamwise component of velocity were 
made using a single hot-film probe mounted on a computer-controlled traversing 
mechanism. The maximum calibration drift was 3% over the rather extended 
sampling durations necessary to obtain accurate statistics. 

2.2. Air jet facility 

The air jet consists of a speed-controlled centrifugal blower, a folded plenum section, 
and a nozzle based on two tangent arcs. This jet was operated at 16 m/s which 
resulted in a Reynolds number of 5.4 x 104 based on exit conditions. The jet speed 
was controlled within 1 YO and the centreline turbulence level in the nozzle exit plane 
was 0.15% over 10-104 Hz, the frequency range of interest. 

The large-scale turbulence was controlled acoustically using a single speaker 
mounted in the plenum section. The speaker was driven from a digital to analog 
converter under program control. The peak amplitude of the acoustic disturbance, 
measured near the jet centreline in the exit plane of the jet nozzle, was 0.13% of the 
jet speed. This small initial disturbance was intended to excite natural flow 
instabilities. The response of the flow will be called an ‘excited’ response to 
distinguish it from the strong forcing used with the water jet. The fundamental 
frequency was 125 Hz and the corresponding Strouhal number fD/U,  was 0.40. The 
jet speed and excitation frequency were selected to match the frequency of the 
unforced spectral peak at  x / D  of 4.0 while avoiding acoustic modes of the plenum 
chamber. 

The instrumentation consisted of a ring of eight hot-wire probes equally spaced in 
polar angle and capable of measuring the streamwise component of velocity. A 
computer-controlled stepper motor was used to simultaneously traverse all eight 
wires in the radial direction. The radial traverse extended from a radius of 1.0 cm to 
the radial location where the mean velocity was 10% of the centreline value. 
Calibration error was less than 1 % including drift and data scatter. 

2.3. Data processing techniques 

The response of the jet to imposed excitations was measured in terms of spatial 
distributions of phase-averaged quantities. The basic signal processing techniques 
are described in this section. 

Field quantities are expressed in cylindrical coordinates (2, T ,  $), where r is the 
polar radius relative to the jet centreline, q5 is the polar angle and x is the streamwise 
distance from the nozzle exit plane. The hot wires and the hot film were calibrated 
in situ using plenum pressure as the standard. Sensor voltages were digitized and 
converted to streamwise component of velocity using a calibration polynomial. 
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Streamwise velocity can be decomposed into a time-average component, a phase- 
averaged fluctuation, and a phase-incoherent fluctuation (Hussain & Reynolds 
1970) : 

where Zi = ( u )  - U and u’ = u- (u). Phase-averaged velocity ( u )  is defined 

u = U+zi+u’, (2.1) 

where the time reference t ,  for the phase-averaged measurements was based on the 
excitation signal. Slope and level were used as the sampling condition and a latching 
algorithm was used to prevent multiple triggers in case of noise. The time resolutions 
were of the excitation period in the case of the water jet and air jet 
respectively. The sample size N was generally about 500. The standard deviation of 
the mean was generally less than 1 YO. 

The phase-averaged velocity was uniform in $ and periodic in t .  It can be 
decomposed into a Fourier series with coefficients F, defined 

and 

1 I T T  

F,(x, r )  = lo (u(z, r ,  $, t ) )  eiBxntlT d$dt. 

Note that F, is complex and the modulus IF,I is the local amplitude of the ntli 
harmonic, where n = 1 refers to the fundamental. 

Vorticity is the feature of large-scale turbulence that is generally emphasized. It 
is the field quantity that is most closely linked to dye and streakline flow 
visualizations. It is possible to reconstruct phase-averaged vorticity from single-wire 
data because of the symmetry and spatial filtering inherent in phase-averaged 
measurements. Using continuity the phase-averaged vorticity component (06) can 
be determined from the following equation : 

Because of the boundary-layer nature of the phase-averaged flow the second term in 
(2.4), which has the greatest potential for error, was generally less than a tenth the 
size of the first term. 

The measurement locations were equally spaced at  eighth-wavelength intervals in 
the streamwise direction. The radial profiles were interpolated to produce data 
equally spaced at  0.020 intervals in radius. First and second derivatives were 
calculated numerically using 5-point smoothing. The smoothing ‘ cutoff’ frequency 
was designed to  be about half the Nyquist bandwidth. Consequently the spatial 
resolution was roughly a half-wave for streamwise derivatives and 0.08D for radial 
derivatives. 

The algorithm is validated in figure 1 by applying i t  to numerical ‘data’ generated 
analytically from a stream function. The stream function 

Y’O 

is based on a steady-state solution for a plane mixing layer discovered by Stuart 
(1967). In the present context i t  is a model for a planar half-jet. The analytic 
vorticity V2$ is shown in figure 1 ( a )  where values of 0 and p were selected to be 0.08 
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FIQURE 1. Vorticity reconstruction from numerical ‘data’. (a) Vorticity, w = -V$; (b) streamwise 
velocity, u = a$/ay + 1 YO random noise ; (c) reconstruction baaed on equation (2.4) in rectangular 
coordinates. 

and 0.25. The analytic velocity a$/ay is shown in figure 1 ( b ) .  Uniformly distributed 
random numbers have been superimposed to simulate statistical uncertainty. The 
standard deviation of the random numbers is 1 %. This represents an upper limit to 
the statistical uncertainty of the phase-averaged measurements. The vorticity 
reconstruction is shown in figure 1(c).  It was obtained by applying a rectangular 
coordinate version of (2.4) to the ‘data’ of figure 1 (b) .  The location and levels of the 
vorticity maxima of figure 1 (a) were reconstructed with reasonable accuracy in figure 
1 ( c ) .  In the absence of synthetic noise the reconstruction was virtually identical to 
figure 1 (a) .  

3. The vortex pairing 
The water jet was forced at 3 Hz using the Scotch yoke mechanism. This was the 

frequency of the ‘preferred mode’ dominant at x / D  = 4 and the corresponding 
Strouhal number fD/U,,  based on nozzle diameter, was 0.30. At any other location 
along the potential core the frequency of the most energetic instability was greater 
than 3Hz. Because of the large-amplitude, pulsatile nature of the forcing a 
broadband spectrum of harmonics of 3 Hz were also introduced. These harmonics 
encompassed the entire range of instabilities dominant at any given location along 
the potential core. 

Phase-averaged dye visualizations and phase-averaged measurements of (u) were 
obtained at identical phase delays relative to the Scotch yoke mechanism. The 
vorticity reconstruction (2.4) was applied to phase-averaged (u )  and the results are 
shown in figure 2. Sections are shown at  various phase delays in a plane that includes 
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FIGURE 2. Contours of phase-averaged vorticity superimposed on phase-averaged flow visual- 
ization. Jet speed : 50 cm/s ; nozzle diameter : 5.08 cm ; forcing frequency : 3.0 Hz ; vorticity 
contour levels: 15, 30, 60, 120 s-l. 

X l D  

the jet centreline. Contours of phase-averaged vorticity ( w + )  are superimposed on 
the phase-averaged dye visualizations. The dye photographs are averaged over 100 
flashes of a strobe light using the technique described in 52.1. The vorticity contour 
levels are spaced logarithmically to approximate the response of photographic film 
to light intensity. 

Within the range x /D  from 1.0 to 3.0 concentrations of dye and vorticity coincided 
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exactly. Upstream of x /D of 1.0 the spatial resolution of the vorticity reconstruction 
was insufficient to capture the closely spaced vortex rings. Downstream of x /D of 3.0 
the dye concentrations were displaced slightly downstream from the vorticity 
maxima. 

Several vortex amalgamations are evident both from the dye visualizations and 
from the vorticity contours. A pairing a t  x /D = 2.5 can be identified based on the 
criterion of cross-stream alignment of the two vortices (Ho & Huang 1982). This 
pairing involved the lowest-order harmonics of the forcing and in that sense it 
represents the leading nonlinear interaction. The dye photographs and the vorticity 
reconstructions show identical patterns of acceleration and eventual amalgamation 
of the upstream ring with the downstream ring. Downstream from the pairing the 
passage frequency of the vortex rings was 3Hz,  the frequency of excitation. 
Upstream of the pairing the passage frequency was 6 Hz, the first harmonic of the 
forcing. Even though the frequency of most energetic spectral peak had shifted by 
an octave, the vortex pairing shown in figure 2 was not a subharmonic resonance. 
This will be established in a variety of ways. 

Figure 3 is a one-dimensional space-time diagram depicting trajectories of 
individual vortex rings. It was produced by tracking the dye concentrations from 
figure 2. The vortex pairing was in reality a complicated amalgamation involving as 
many as seven individual vortex rings. The pattern of vortex trajectories is periodic 
on a 3 Hz cycle but not on a 6 Hz cycle. Consequently, the amalgamations were not 
a series of binary pairings. 

The Scotch yoke mechanism produced a periodic series of pulses containing a 
spectrum of harmonics. The linear amplification of the various harmonics is a 
function of the shear-layer thickness. For present purposes the shear-layer 
momentum thickness is defined 

where Uo is the local centreline velocity and Ro,l is the radial location where U/Uo = 
0.1. Integral (3.1) was truncated to avoid the outer edge of the jet where hot-wire 
measurements are known to be inaccurate. Solutions of the stability equations are 
functions of reduced frequency 21cf8,,,/Uj and ratio of shear-layer thickness to jet 
diameter 8,.,/D (Michalke 1971). 

Power spectral densities of streamwise velocity are shown in figure 4 plotted 
against frequency and against reduced frequency. The measurements were made a t  
the inside edge of the mixing layer along a ray extending from the nozzle lip to the 
jet centreline at x / D  = 4. At each location the forced spectrum is superimposed on 
the unforced spectrum. There is an obvious shift of the spectral peaks in figure 4 ( a )  
to lower frequency with increasing streamwise distance. The unforced spectral peak 
shifted from 24 to 3Hz over the x / D  range from 0.25 to 4. The most energetic 
harmonics in the forced spectra tracked the unforced spectra, shifting from 15 to 
3 Hz over the same range of x /D.  

Features of figure 4 can be explained qualitatively within the framework of linear 
theory. At each x / D  the most energetic spectral peak, figure 4 ( b ) ,  fell within the 
range of reduced frequency 0.124.34. These values are consistent with the band of 
unstable waves predicted from linear stability theory. The reduced frequency of a 
neutrally amplified wave usually falls between 0.3 and 0.4, depending on the shape 
of the mean velocity profile (Petersen & Samet 1988). A wave with that frequency 
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FIGURE 3. Space-time trajectories of dye concentrations from figure 2. 

Frequency, f (Hz) Reduced frequency, 2~t jB , ,~  f U, 

FIQURE 4. Power spectral densities measured along a line extending from [ z /D ,  r /D]  = [O.O, 0.51 to 
[4.0,0.0]. Forced and unforced spectra superimposed at each streamwise location. Frequency scale : 
(a)  dimensional ; ( b )  normalized by local shear-layer thickness. 
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FIQURE 5. Narrowband vorticity reconstructions. Spectral content (a) 3 Hz + 6 Hz + 9 Hz ; 
( b )  6 Hz+9 Hz; ( e )  3 Hz. Time delay: t /T = 0.9; contour levels same as figure 2. 

will have experienced its maximum cumulative amplification. Waves with higher 
frequency will be exponentially damped. 

Within the framework of the previous, linear arguments there are nonlinear 
mechanisms implicit in the spreading of the mean flow. The underlying nonlinearities 
include momentum transfer to the mean flow through wave-induced stresses. The 
uppermost spectra in figure 4 provide an example. At x / D  = 0.25 the frequency of 
the most energetic forced harmonic was less than the frequency of the natural 
instability (figure 4a). However, the corresponding reduced frequency was larger 
(figure 4b). This is a consequence of changes in the shape of the mean velocity profile 
caused by the forced unsteady flow. 

Linear arguments can also be applied to vortex amalgamations. Many of the visual 
features of a vortex pairing can be explained in terms of the linear saturation of a 
subharmonic wave in a diverging base flow (Wygnanski & Weisbrot 1988, figures 1 
and 2). In figure 5, following Wygnanski & Weisbrot, vorticity contours (figure 5 a )  
were filtered to extract (i) the fundamental plus harmonic (figure 5 b )  and (ii) the 
subharmonic alone (figure 5 c). The double-peak structure in the vorticity distribution 
was associated more with the subharmonic (compare figures 5 (a  and c)) than with the 
fundamental. Filtering at  the higher harmonics captured only the upstream vorticity 
peak (compare figure 5 (a and b)). As a consequence the double peak structure in the 
vorticity distribution and the merging process alone are insufficient evidence of 
direct, nonlinear energy transfer between waves. 

In the case of a plane mixing layer, the location of vortex pairing coincides with 
the saturation of the subharmonic (Ho &, Huang 1982). For the pairing shown in 
figure 5 the frequency of the subharmonic was 3Hz, the forcing frequency. The 
frequency of the fundamental was 6 Hz. The actual location of the pairing, based on 
cross-stream alignment of the two vortices, was x / D  = 2.5 (figure 2). The streamwise 
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FIGURE 6. Streamwise distribution of phase-averaged modulus integrated across the shear layer 
and normalized by exit conditions: 8, 3 Hz subharmonic; 0 ,  6 Hz fundamental p, 9 Hz 
harmonic. 

distribution of subharmonic amplitude is shown in figure 6 along with the 
fundamental and $ harmonic. The amplitude is expressed as the phase-averaged 
modulus integrated across the mixing layer : 

IFm I rdr. 

The modulus IF,I was obtained from phase-averaged hot-wire measurements using 
(2.3). The normalization is based on the initial volume flux Q0 a t  the nozzle exit plane. 
Based on this measure, the subharmonic saturated a t  x / D  = 2.0, slightly upstream of 
the pairing location. The peaks in the distributions of subharmonic and fundamental 
each occurred one wavelength from the nozzle. This rapid amplification and the 
rather high levels are consequences of the strong forcing. 

The prediction of total amplification, as in figure 6, is one area where linear theory 
generally fails. Even when non-parallel terms are retained the linear theory predicts 
amplitudes that are considerably larger than measured (e.g. Wygnanski & Petersen 
1987, figure 5). That is because total amplification is particularly sensitive to  energy 
transfer to other waves by direct nonlinear interactions. 

I n  the present case the leading, direct nonlinear interaction associated with the 
vortex pairing shown in figures 2 and 5 is not a subharmonic resonance. By 
examining the relative phase advance of the lowest-order harmonics it will be shown 
that the leading interaction involves the 3 Hz subharmonic, the 6 Hz fundamental 
and the $ harmonic. 

The phase advance of a wavetrain propagating through a two-dimensional, 
dispersive shear layer can be expressed as (Crighton & Gaster 1976) 
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FIQURE 7. Streamwise distribution along 7 = -3.5 of phase difference appropriate to (a) 
subharmonic resonance and ( b )  triad resonance between subharmonic, fundamental and $ 
harmonic. --.--, Phaae advance of (a) 6 Hz fundamental and ( b )  3 Hz subharmonic shown for 
reference. 

The subscript n refers to the harmonic number, a,, is the streamwise wavenumber, 
@,,(xo, 4) is the initial phase offset, and 4 is the radial similarity coordinate defined 

7 = [ r - R o . 5 1 / e o . ~ *  (3.4) 

Because the leading nonlinearity in the momentum equation is quadratic in 
disturbance amplitude, the leading resonant interaction will involve a triad of waves. 
In order for a particular triad resonance to occur the resonance conditions must be 
compatible with the dispersion relationship for the waves. The resonance conditions 
for a subharmonic resonance between a wavetrain with fundamental frequency and 
two wavetrains with subharmonic frequency are (Phillips 1974) 

f l  = 2f0.5; al = 2a0.5, (3.5) 

where the subscripts n = 0.5 and n = 1 refer to the subharmonic and fundamental 
respectively. 

The possibility of a subharmonic resonance can be tested by examining the phase 
difference Yo,6- Y,. From (3.3) and along a path of constant 7 : 

2 ~ 0 . 5 ( % )  - ~ ( x )  = 2@0.5 - + p [2010.6(5) - 45)1 d5. (3.6) 

If there is a subharmonic resonance then from (3.5) the integrand should vanish and 
according to (3.6) the phase difference 2!P0,- !PI ought to be constant with z, the 
streamwise distance. 

In practice Y,, is the phase of F,, calculated from phase-averaged hot-wire 
measurements according to (2 .3) .  The subharmonic resonance hypothesis was tested 
using measured phase angles and the results are shown in figure 7(a ) .  The phase 
angles were measured along 7 = -3.5 which is located inside the potential core near 
the edge of the mixing layer. The phase difference was not constant with x.  By 
implication the subharmonic resonance conditions (3.5) were not satisfied. A t  the 
location of the pairing, x/D = 2.5, the slope was positive. From (3.6) a positive slope 
implies > a,, which implies that the phase speed of the fundamental 2nj1/a1 
exceeded n j , / 0 1 ~ , ~ ,  the phase speed of the subharmonic. Based on the phase advance 
of the fundamental, shown in figure 7 (a)  for reference, the average wavelength h/D 
of the 6 Hz fundamental was 1.2 and the average phase speed c/U, was 0.73. 

ZQ 

4 FLM 239 
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Next we consider the triad resonance involving the subharmonic, the fundamental 
and the i harmonic. The resonance conditions are 

f 1 . 5  = f 0 . 5  +fl ; %.5 = a0.5 (3.7) 

The frequency of the harmonic was 9Hz,  the second harmonic of the forcing 
frequency. The existence of this resonance can be verified by examining the phase 
difference Yo.5 + Yl - From (3.3) and along a path of constant q : 

y0.5(x)+ y1.5(x) = ~ 0 . 5 + $ 1 - $ 1 . 5 + r  [a0.5(E)+~,(5)-a1.,(5)1dE. (3*8) 
5 0  

If the resonance conditions (3.7) are satisfied then the integrand will vanish and the 
phase difference (3.8) should be constant with x. 

The triad hypothesis (3.7) was tested by measuring the phase difference 
Yo.5 + !Pl - !Pl,5. The results, shown in figure 7 (b ) ,  are consistent with the hypothesis. 
From approximately x / D  = 0.5 to approximately x /D = 2.5 the phase difference was 
constant within the scatter of the data. The streamwise region extends one 
subharmonic wavelength and includes the location of the vortex pairing. Based on 
the phase advance of the 3 Hz subharmonic, included in figure 7 (b )  for reference, the 
average wavelength AID of the subharmonic was 2.1 and the average phase speed 
c/Ui was 0.64. 

4. Forcing with controlled waveform 
In  this section we will describe measurements made in the air jet facility using 

computer-controlled, acoustic excitation. It will be shown that the principal 
conclusions from the water jet measurements of the previous section were verified 
using the air jet facility which operated a t  a higher Reynolds number and a t  a much 
lower excitation level. I n  addition the acoustic excitation enabled much greater 
control over the excitation waveform than was possible with the scotch yoke 
mechanism used with the water jet. Control over the waveform allowed a direct 
comparison between broadband excitation and a true subharmonic resonance. Also, 
the effects of higher harmonics were investigated in a systematic way by successively 
truncating the Fourier series representation of the basic waveform. 

A ‘sawtooth ’ wave was selected as the basic excitation waveform. A single period 
of the sawtooth is defined by the following expression: 

where A is the wave amplitude and T is the period. The sawtooth wave simulates a 
periodic series of impulses and was intended as a rough approximation to the 
waveform produced by the scotch yoke mechanism. 

A subharmonic resonance was created by truncating the Fourier series expansion 
of (4.1) a t  the two lowest harmonics. The resulting expression is 

- 2A[ sin . (2;t) - ++sin . (4;t)] - . 
R 

In  accordance with the water jet experiment, the period T was selected such that the 
base frequency f = 1/T matched the ‘preferred mode’ a t  x / D  of 4. For the air jet the 
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FIQURE 8. Phase-averaged acoustic waveforms corresponding to excitation by (a) a sawtooth 
wave, equation (4.1), and (b) the two-term truncation, equation (4.2). Acoustic amplitudes : 
2.0 cmjs; measurement location: [ z /D ,  r /D]  = [0.25, 0.201. 

L 

X l D  

FIQURE 9. Streamwise distribution along 7 = - 2.6 of phase difference appropriate to subharmonic 
resonance in the case of excitation with: (a) two-term truncation ; (b) sawtooth wave ; and (c) phase 
difference appropriate to triad resonance between subharmonic, fundamental and t harmonic in the 
case of a sawtooth excitation. Solid symbols refer to sawtooth excitation but with reversed sign. 
Phase advance of (a, b) 250 Hz fundamental and (c) 125 Hz subharmonic shown for reference. 

base frequency was 125 Hz and the corresponding Strouhal number fD/U, was 0.397. 
Waveform (4.2) can be viewed as a 125 Hz ‘subharmonic’ superimposed on a weaker 
250 Hz ‘fundamental’. Excitation using this waveform provided a reference for 
evaluating the response of the jet to the sawtooth wave. 

The measured acoustic waveforms (4.1) and (4.2) are shown in figure 8. They were 
measured using a hot wire located near the centreline, nozzle exit plane. The jet was 
operated at low speed, 1.3 m/s, sufficient to provide a polarizing flow. The sawtooth 
waveform (4.1) had been modified to include a 0.1T rise time to accommodate the 
response of the plenum speaker. This resulted in a more rapid roll-off of the higher 

4-2 
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FIQURE 10. Streamwise distribution of phase-averaged modulus : m, 125 Hz subharmonic ; 0 ,  
250 Hz fundamental ; open symbols, sawtooth excitation ; solid symbols ; two-term truncation. 

harmonics but had minimal impact on the lower harmonics. The acoustic amplitude 
A (figure 8) was 2.0 cm/s. At the jet operating speed of 16 m/s this amplitude 
corresponds to an excitation level A / U j  of 0.13%. 

The leading resonances are documented in figure 9. The phase differences were 
measured along = -2.6 which corresponds to U(r)/U,  of approximately 0.96. 
Waveform (4.2) produced a subharmonic resonance as expected. The fundamental 
and subharmonic waves were phase-locked over most of the potential core region, 
figure 9(a).  The sawtooth excitation, figure 9(b) ,  did not produce a subharmonic 
resonance. Instead, the sawtooth excitation produced a triad resonance between the 
subharmonic, fundamental and $ harmonic (figure 9 c ) .  Note the similarity between 
the phase distributions of figure 9 ( b ,  c )  and the distributions shown in figure 7 ,  
measured with the water jet. 

The nonlinear response was sensitive to the polarity of the sawtooth wave. 
Symmetry of the response was examined by reversing the sign of the amplitude A in 
(4.1). The sign reversal resulted in asymmetries in both amplification and phase 
advance. Reversing the sign ought to introduce a phase shift of --7c between the 
fundamental and subharmonic and likewise between the harmonic and the sum of 
fundamental plus subharmonic. At x / D  of 1.0 the measured phase shifts were - 0 . h  
(figure 9 b )  and + 0 . 8 ~  (figure 9c). 

Streamwise distributions of the phase-averaged response are shown in figure 10. 
Integrated moduli evaluated across the mixing layer are shown for the 125 and 
250 Hz spectral components. The moduli were calculated from phase-averaged hot- 
wire measurements using (2.3). The sawtooth wave and the truncated waveform were 
introduced a t  equal amplitude (figure 8). However, the nonlinear response of the jet 
to the sawtooth was larger by a factor of 5. To place this in perspective, the forced 
response of the water jet, figure 6, was larger by a factor of 3 than the response of 
the air jet to sawtooth excitation. However, the level of forcing was larger by a factor 
of 100. 

The rate of amplification per wavelength was smaller for the air jet than the water 
jet. The peak levels of the integrated moduli occurred two wavelengths from the 
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FIQURE 11. Cross-stream distributions of phase-averaged moduli of fundamental Fl,o and 
subharmonic Fo,6 for various excitation waveforms : 0,  sawtooth excitation; +, sawtooth with 
reversed sign ; , two-term truncation ; V, three-term truncation ; A, four-term equation ; -, 
stability eigenfunction. Momentum thickness 8 calculated from equation (3.1). (a) x / D  = 1.0, 

8 = 0 .39M.053 i ;  (b )  x / D  = 2.0, a,, 8 = 0.349-0.044i. 

nozzle exit as opposed to one wavelength for the distributions shown in figure 6. That 
is one reason to make a distinction between ‘forced’ and ‘excited’ response. 

The differences in response to the sawtooth waveform (4.1) as compared to 
waveform (4.2) were caused by the presence of higher harmonics. The sensitivity to 
harmonic content was examined by truncating the Fourier series expansion of (4.1) 
at successively higher harmonics. Some of the results are shown in figure 11. Cross- 
stream distributions of fundamental and subharmonic modulus are shown for 
excitation by two-, three- and four-term truncations of the sawtooth wave. The 
convergence was rather slow. In fact as many as 10 harmonics were required in order 
to achieve the same response as the sawtooth. The response was sensitive to the 
initial rise time of the sawtooth; the amplification diminished when the rise time 
exceeded 0.12’. The key requirement was that enough terms be retained to include 
the frequency of the initial shear-layer instability. The overlap between the initial 
shear-layer instability and higher harmonics of the forcing was observed previously 
in connection with the water-jet spectral measurements (figure 4, x/D = 0.25). 

The shapes of the distributions of fundamental and harmonic, figure 11, are not 
sensitive to the presence of higher harmonics. This would be more apparent if the 
distributions were scaled to enclose the same area. Eigenfunction moduli calculated 
from linear, inviscid stability theory are included for comparison (see Peterson & 
Samet 1988, for computational details). The eigenfunctions were calculated for 
frequencies of 250 Hz (x/D = 1.0) and 125 Hz ( x / D  = 2.0). The two reduced 
frequencies were both approximately 0.24 and the two waves were still slightly 
unstable a t  the two respectively streamwise locations. The eigenfunctions are scaled 
to the sawtooth distributions and there is rough agreement in the shapes. 

Changing the polarity of the sawtooth excitation did not affect the shape of the 
cross-stream distribution of the fundamental, figure 11. However, the amplification 
was significantly reduced. This lack of symmetry in the response of the flow is a 
surprising result and the mechanism is not yet understood. 

As a h a 1  comment we note a difference between planar and axisymmetric mixing 
layers in their respective global sensitivity to external excitation. When shear-layer 
instabilities are excited at sufficiently high levels in a plane mixing layer the 
saturation of the excited mode can inhibit the growth of the shear layer (Ho & Huang 
1982; Weisbrot & Wygnanski 1988). This can result in a plateau or even in an 
overshoot in the streamwise distribution of shear-layer thickness. 



96 R. A .  Petersen and R. C .  Clough 

Q 
Q. - 1.5 - 

0 I 2 3 4 

10 

8 

6 

2 

0 1 2 3 4 
X l D  X l D  

FIQIJRE 12. Streamwise distribution of volume flux &/&, and mixing-layer thickness &: +, 
water jet with 3 Hz forcing; 0 ,  air jet with sawtooth excitation; a, excitation with two-term 
truncation. 

A similar effect was not observed in the case of the axisymmetric mixing layer. 
Streamwise distributions of shear-layer thickness Bo,l and volume flux are shown in 
figure 12 for various different excitation waveforms and levels. The volume flux Q is 
defined by the following equation: 

The normalization Q0 is the initial ‘ tophat ’ volume flux calculated from jet speed and 
diameter. The integrated flux was underestimated due to the R,,l truncation and &, 
was overestimated due to the tophat assumption. The combined error of the ratio 
was about 3%, estimated by extrapolation to the origin. The error would increase 
with jet spreading because of radial bias but it was not considered to be so large as 
to obscure trends. 

From figure 12 it is apparent that entrainment was enhanced by external 
excitation or forcing. Natural spreading was identical to excitation with waveform 
(4.2) and is not shown. At very high levels of forcing the water jet volume flux 
distribution showed a slight change of slope beyond x/D = 2. However, there was not 
a distinct plateau. The effect on momentum thickness was modest at all levels of 
forcing. In particular, truncating the series expansion of the sawtooth wave had only 
minor effects on the mean flow. This means that the profound differences in 
amplification, figures 10 and 11, cannot be explained by linear stability arguments. 

It should be emphasized that the base frequency of the excitation waveforms was 
selected to match the most amplified instability near x / D  = 4. One would expect 
three-dimensional effects to be more pronounced near the end of the potential core 
than near the nozzle lip. If the frequency had been selected to excite instabilities 
nearer the lip then it is possible that the response in that region might have been 
more like a plane mixing layer. 

5. Conclusions 
The term ‘vortex pairing ’ was introduced by Winant & Browand (1974) to describe 

as phenomenon that was fundamentally broadband. Nevertheless, theoretical and 
numerical treatments usually model a vortex pairing by a subharmonic resonance 
between two monochromatic wavetrains. Laboratory experiments often create the 
same idealized boundary conditions. In the present study when vortex pairings were 
produced by broadband excitation the leading interaction was not a subharmonic 
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resonance. By inference it is possible that subharmonic pairings may not be 
representative of natural mixing layers. 

Periodic, pulsatile waveforms contain a spectrum of harmonics whose power 
decreases with harmonic number. Experiments were performed in two different jet 
facilities a t  two different Reynolds numbers. The jets were forced or excited by two 
different pulsatile waveforms whose amplitudes differed by a factor of 100. In each 
case the leading nonlinear interaction was a triad resonance involving the 
fundamental, the subharmonic and the g harmonic. 

The importance of the spectrum of higher harmonics was demonstrated by 
exciting an air jet with a sawtooth wave and then comparing the response with 
excitation waveforms where the Fourier expansion of the sawtooth was truncated at 
successively fewer terms. Truncating the sawtooth expansion at the first two terms 
resulted in a true subharmonic resonance between the two wavetrains. However, the 
amplification of the base excitation frequency was only 20% as large as when the 
higher harmonics were retained. 

The key requirement was that enough terms be retained to include the frequency 
of the initial shear-layer instability. We feel that this overlap between the initial 
shear-layer instability and higher harmonics of the forcing may be similar to the 
‘collective interaction’ concept introduced by Ho & Huang (1982). They observed 
an interaction between the initial shear-layer instability and a single long- 
wavelength, high-amplitude wave. In  the present case there appears to be a cascade 
of energy over a spectrum of wavenumbers. 

The most significant direct nonlinear interaction was a triad resonance between the 
subharmonic, fundamental and harmonic. However, the most significant nonlinear 
interactions appear to be indirect. Many visual features of the vortex pairing and the 
transfer of energy to lower harmonics can be explained qualitatively within the 
framework of linear theory applied to a divergent mean flow. The mechanisms 
responsible for the spreading of the mixing layer include wave-induced Reynolds 
stresses. 

This work was supported by the NASA Lewis Research Center under Grant NAG 
3-460 and by the National Science Foundation under Grant MSM 8800086. 
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